Alarm Systems

Sale!

Automatic and Manual Burglar Alarm

IDS Control System

KSh20,000.00 KSh19,000.00
Sale!
KSh20,000.00 KSh18,000.00
Sale!

Automatic and Manual Burglar Alarm

GSM Control Panel

KSh15,000.00 KSh14,000.00
Sale!
KSh14,000.00 KSh13,500.00
Sale!

Automatic and Manual Burglar Alarm

Wireless Alarm System Receiver

KSh14,000.00 KSh13,000.00
Sale!

Automatic and Manual Burglar Alarm

Outdoor Motion Detector

KSh8,000.00 KSh7,000.00
Sale!

Automatic and Manual Burglar Alarm

Siren for Alarm

KSh3,500.00 KSh3,000.00
Sale!

Automatic and Manual Burglar Alarm

Wireless remote Buttons

KSh2,000.00 KSh1,800.00
Sale!

Automatic and Manual Burglar Alarm

Pet Immunity Motion Detector

KSh1,600.00 KSh1,500.00
Sale!

Automatic and Manual Burglar Alarm

Backup batterys 12v 7A

KSh1,400.00 KSh1,300.00

A security alarm is a system designed to detect intrusion – unauthorized entry – into a building or other area. Security alarms are used in residential, commercial, industrial, and military properties for protection against burglary (theft) or property damage, as well as personal protection against Intruders. Car alarms likewise help protect vehicles and their contents. Prisons also use security systems for control of inmates.

 

Some alarm systems serve a single purpose of burglary protection; combination systems provide both fire and intrusion protection. Intrusion alarm systems may also be combined with closed-circuit television surveillance (CCTV) systems to automatically record the activities of intruders, and may interface to access control systems for electrically locked doors. Systems range from small, self-contained noisemakers, to complicated, multiarea systems with computer monitoring and control. It may even include two-way voice which allows communication between the panel and Monitoring station.

 

The most basic alarm consists of one or more sensors to detect intruders, and an alerting device to indicate the intrusion. However, a typical premises security alarm employs the following components:

 

Premises control unit (PCU), Alarm Control Panel (ACP), or simply panel: The “brain” of the system, it reads sensor inputs, tracks arm/disarm status, and signals intrusions. In modern systems, this is typically one or more computer circuit boards inside a metal enclosure, along with a power supply.

Sensors: Devices which detect intrusions. Sensors may be placed at the perimeter of the protected area, within it, or both. Sensors can detect intruders by a variety of methods, such as monitoring doors and windows for opening, or by monitoring unoccupied interiors for motions, sound, vibration, or other disturbances.

Alerting devices: These indicate an alarm condition. Most commonly, these are bells, sirens, and/or flashing lights. Alerting devices serve the dual purposes of warning occupants of intrusion, and potentially scaring off burglars. These devices may also be used to warn occupants of a fire or smoke condition.

Keypads: Small devices, typically wall-mounted, which function as the human-machine interface to the system. In addition to buttons, keypads typically feature indicator lights, a small multi-character display, or both.

Interconnections between components. This may consist of direct wiring to the control unit, or wireless links with local power supplies.

Security devices: Devices to detect unauthorized entry or movements such as spotlights, cameras & lasers.

 

In addition to the system itself, security alarms are often coupled with a monitoring service. In the event of an alarm, the premises control unit contacts a central monitoring station. Operators at the station see the signal and take appropriate action, such as contacting property owners, notifying police, or dispatching private security forces. Such signals may be transmitted via dedicated alarm circuits, telephone lines, or the internet.

Sensor types

Hermetically sealed reed switches

 

The hermetically sealed reed switch is a very common type of two piece sensor that operates with an electrically conductive reed switch that is either normally open or normally closed when under the influence of a magnetic field as in the case of proximity to the second piece which contains a magnet. When the magnet is moved away from the reed switch, the reed switch either closes or opens, again based on whether or not the design is normally open or normally closed. This action coupled with an electric current (typically at 12V DC) allows an alarm control panel to detect a fault on that zone or circuit. These type of sensors are very common and are found either wired directly to an alarm control panel, or they can typically be found in wireless door or window contacts as sub-components.

Passive infrared detectors

A passive infrared sensor used to detect motion

 

The passive infrared (PIR) motion detector is one of the most common sensors found in household and small business environments. It offers affordable and reliable functionality. The term passive refers to the fact that the detector does not generate or radiate its own energy; it works entirely by detecting the heat energy given off by other objects.

 

Strictly speaking, PIR sensors do not detect motion; rather, they detect abrupt changes in temperature at a given point. As an intruder walks in front of the sensor, the temperature at that point will rise from room temperature to body temperature, and then back again. This quick change triggers the detection.

 

PIR sensors may be designed to be wall- or ceiling-mounted, and come in various fields of view, from narrow-point detectors to 360-degree fields. PIRs require a power supply in addition to the detection signalling circuit.

Infrasound detectors

 

The infrasound detector works by detecting infrasound, or sound waves at frequencies below 20 hertz. Sounds at those frequencies are inaudible to the human ear.[1] Due to its inherent properties, infrasound can travel distances of many hundreds of kilometers. Infrasound signals can result from volcanic eruptions, earthquakes, gravity waves, opening and closing of doors, forcing windows to name a few.[2]

 

The entire infrasound detection system consists of the following components: a speaker (infrasound sensor) as a microphone input, an order-frequency filter, an analog to digital (A/D) converter, and finally an MCU, which is used to analyse the recorded signal.[3]

 

Each time a potential intruder tries enter into a house, she or he tests whether it is closed and locked, uses tools on openings, or/and applies pressure, and therefore he or she creates low-frequency sound vibrations. Such actions are immediately detected by the infrasound detector before the intruder breaks in.

 

The primary purpose of such system is to stop burglars before they enter the house, to avoid not only theft, but vandalism. The sensitivity can be modulated depending on the size of a house and presence of animals.

Ultrasonic detectors

 

Using frequencies between 15 kHz and 75 kHz, these active detectors transmit ultrasonic sound waves that are inaudible to humans. The Doppler shift principle is the underlying method of operation, in which a change in frequency is detected due to object motion. This is caused when the object must cause a change in the ultrasonic frequency to the receiver relative to the transmitting frequency.

 

The ultrasonic detector operates by the transmitter emitting an ultrasonic signal into the area to be protected. The sound waves are reflected by solid objects (such as the surrounding floor, walls and ceiling) and then detected by the receiver. Because ultrasonic waves are transmitted through air, then hard-surfaced objects tend to reflect most of the ultrasonic energy, while soft surfaces tend to absorb most energy.

 

When the surfaces are stationary, the frequency of the waves detected by the receiver will be equal to the transmitted frequency. However, a change in frequency will occur as a result of the Doppler principle, when a person or object is moving towards or away from the detector. Such an event initiates an alarm signal. This technology is considered obsolete by many alarm professionals, and is not actively installed.

Microwave detectors

 

This device emits microwaves from a transmitter and detects any reflected microwaves or reduction in beam intensity using a receiver. The transmitter and receiver are usually combined inside a single housing (monostatic) for indoor applications, and separate housings (bistatic) for outdoor applications. To reduce false alarms this type of detector is usually combined with a passive infrared detector, or Dual Tec brand or similar alarm.

 

Microwave detectors respond to a Doppler shift in the frequency of the reflected energy, by a phase shift, or by a sudden reduction of the level of received energy. Any of these effects may indicate motion of an intruder.

Compact surveillance radar

 

Compact surveillance radar emits microwaves from a transmitter and detects any reflected microwaves. They are similar to microwave detectors but can detect the precise location of intruders in areas extending over hundreds of acres. With the capability of measuring range, angle, velocity, direction and size of the target, a CSR is able to pinpoint a precise GPS coordinate of an intruder. This target information is typically displayed on a map, user interface or situational awareness software that defines geographical alert zones or geofences with different types of actions initiated depending on time of day and other factors. CSR is commonly used to protect outside the fenceline of critical facilities such as electrical substations, power plants, dams, and bridges.

Photoelectric beams

 

Photoelectric beam system detect the presence of an intruder by transmitting visible or infrared light beams across an area, where these beams may be obstructed. To improve the detection surface area, the beams are often employed in stacks of two or more. However, if an intruder is aware of the technology’s presence, it can be avoided. The technology can be an effective long-range detection system, if installed in stacks of three or more where the transmitters and receivers are staggered to create a fence-like barrier. Systems are available for both internal and external applications. To prevent a clandestine attack using a secondary light source being used to hold the detector in a sealed condition whilst an intruder passes through, most systems use and detect a modulated light source.

Glass-break detection

 

The glass-break detector may be used for internal perimeter building protection. Glass-break acoustic detectors are mounted in close proximity to the glass panes and listen for sound frequencies associated with glass breaking.

 

Seismic glass-break detectors, generally referred to as shock sensors, are different in that they are installed on the glass pane. When glass breaks it produces specific shock frequencies which travel through the glass and often through the window frame and the surrounding walls and ceiling. Typically, the most intense frequencies generated are between 3 and 5 kHz, depending on the type of glass and the presence of a plastic interlayer. Seismic glass-break detectors feel these shock frequencies and in turn generate an alarm condition.

 

Window foil is a less sophisticated, mostly outdated detection method that involves gluing a thin strip of conducting foil on the inside of the glass and putting low-power electric current through it. Breaking the glass is practically guaranteed to tear the foil and break the circuit.

Smoke, heat, and carbon monoxide detectors

 

Most systems may also be equipped with smoke, heat, and/or carbon monoxide detectors. These are also known as 24-hour zones (which are on at all times). Smoke and heat detectors protect from the risk of fire using different detection methods. Carbon monoxide detectors help protect from the risk of carbon monoxide poisoning. Although an intruder alarm panel may also have these detectors connected, it may not meet all the local fire code requirements of a fire alarm system.

 

Traditional smoke detectors are technically ionisation smoke detectors which create an electric current between two metal plates, which sound an alarm when disrupted by smoke entering the chamber. Ionisation smoke alarms can quickly detect the small amounts of smoke produced by fast-flaming fires, such as cooking fires or those fueled by paper or flammable liquids. A newer, and perhaps safer, type is a photoelectric smoke detector. It contains a light source in a light-sensitive electric sensor, which is positioned at a 90-degree angles to the sensor. Normally, light from the light source shoots straight across and misses the sensor. When smoke enters the chamber, it scatters the light, which then hits the sensor and triggers the alarm. Photoelectric smoke detectors typically respond faster to a fire in its early, smoldering stage – before the source of the fire bursts into flames.

Motion sensors

 

Motion sensors are devices that use various forms of technology to detect movement. The technology typically found in motion sensors to trigger an alarm includes infrared, ultrasonic, vibration and contact. Dual technology sensors combine two or more forms of detection in order to reduce false alarms as each method has its advantages and disadvantages. Traditionally motion sensors are an integral part of a home security system. These devices are typically installed to cover a large area as they commonly cover up to 40 ft with a 135° field of vision.[4]

Driveway alarms

 

Driveway alarm systems can be tied into most security and automation systems. They are designed to alert residents to unexpected visitors, intruders, or deliveries arriving at the property. They come in magnetic and infrared motion sensing options. Driveway alarms can also be purchased in hard-wired and wireless systems. They are common in rural security systems as well as for commercial applications.

Vibration (shaker) or inertia sensors

Strain-sensor cable installed on a chain-link/barbed-wire fence

 

These devices are mounted on barriers and are used primarily to detect an attack on the structure itself. The technology relies on an unstable mechanical configuration that forms part of the electrical circuit. When movement or vibration occurs, the unstable portion of the circuit moves and breaks the current flow, which produces an alarm. The technology of the devices varies and can be sensitive to different levels of vibration. The medium transmitting the vibration must be correctly selected for the specific sensor as they are best suited to different types of structures and configurations.

 

A rather new and unproven type of sensor uses piezo-electric components rather than mechanical circuits, which can be tuned to be extremely sensitive to vibration.

 

Advantages: Very reliable sensors, low false alarm rate, and midpriced.

Disadvantages: Must be fence-mounted. The rather high price deters many customers, but its effectiveness offsets its high price. Piezo-electric sensors are a new technology with an unproven record as opposed to the mechanical sensor which in some cases has a field record in excess of 20 years.

 

Passive magnetic field detection

 

This buried security system is based on the magnetic anomaly detection principle of operation. The system uses an electromagnetic field generator powered by two wires running in parallel. Both wires run along the perimeter and are usually installed about 5″/12 cm apart on top of a wall or about 12″/30 cm below ground. The wires are connected to a signal processor which analyses any change in the magnetic field.

 

This kind of buried security system sensor cable could be embedded in the top of almost any kind of wall to provide a regular wall detection ability, or can be buried in the ground. They provide a very low false alarm rate, and have a very high chance of detecting real burglars. However, they cannot be installed near high voltage lines, or radar transmitters.

E-field

 

This proximity system can be installed on building perimeters, fences, and walls. It also has the ability to be installed free standing on dedicated poles. The system uses an electromagnetic field generator powering one wire, with another sensing wire running parallel to it. Both wires run along the perimeter and are usually installed about 800 millimetres apart. The sensing wire is connected to a signal processor that analyses: